OFFSPRING SEX RATIO IS RELATED WITH LAYING DATE AND HATCHING SEQUENCE IN THE MAGELLANIC PENGUIN SPHENISCUS MAGELLANICUS
DOI:
https://doi.org/10.58843/ornneo.v35i1.1271Keywords:
breeding, brood, PatagoniaAbstract
We analyzed the variation in the secondary sex ratio of Magellanic Penguin Spheniscus magellanicus breeding in six colonies on the Patagonian coast of Argentina. We tested the effects of laying date and hatching sequence on the probability of producing sons and daughters. The global secondary sex ratio did not differ from equality, and there were no differences among the colonies. However, regardless of the colony, laying date, and hatching sequence, there was a significant effect on the proportion of males and females reared. Pairs that were laid early in the breeding season were more likely to raise a male. In addition, offspring that hatched first were more likely to be male than those that hatched second. Our results are consistent with the adaptive importance of producing males, likely the costliest sex, early in the breeding season or early in the brood when food resources are still abundant.
References
Ankney, CD (1982) Sex Ratio Varies with Egg Sequence in Lesser Snow Geese. The Auk 99(4): 662–666. https://doi.org/10.1093/auk/99.4.662
Bertellotti, M, JL Tella, JA Godoy, G Blanco, MG Forero, JA Donázar & O Ceballos (2002) Determining sex of Magellanic Penguins using molecular procedures and discriminant functions. Waterbirds 25: 479–484. https://doi.org/10.1675/1524-4695(2002)025[0479:DSOMPU]2.0.CO;2
Bertellotti, M, P García Borboroglu & P Yorio (2006) Actualización de la información sobre distribución y abundancia de aves marinas en las costas de la provincia de Chubut. Dirección de Fauna y Flora de Chubut, Chubut, Argentina.
Blanco, G, JA Davila, JA López Septiem, R Rodríguez & F Martínez (2002) Sex-biased initial eggs favours sons in the slightly size-dimorphic scops owl (Otus scops). Biol. J. Lin. Soc. 76: 1–7. https://doi.org/10.1111/j.1095-8312.2002.tb01709.x
Boersma, PD & DL Stokes (1995) Mortality patterns, hatching asynchrony, and size asymmetry in Magellanic Penguin (Spheniscus magellanicus) chicks. Pp 3–25 in Dann P, Y Norman & P Reilly (eds) Penguin Biology. Surrey Beatty, Sydney, Australia.
Boersma, PD, DL Stokes & P Yorio (1990) Reproductive Variability and historical change of Magellanic Penguins (Spheniscus magellanicus) at Punta Tombo, Argentina. Pp. 15-43 in Davis L & JT Darby (eds) Penguin Biology. Academic Press, New York, US.
Bortolotti, G (1986) Influence of sibling competition on nestling sex ratios of sexually dimorphic birds. American Naturalist 127: 495–507. https://doi.org/10.1086/284498
Charnov, EL (1982) The theory of sex allocation. Princeton University Press, Princeton.
Clutton-Brock, TH (1985) Sex ratio variation in birds. Ibis 128: 317–329. https://doi.org/10.1111/j.1474-919X.1986.tb02682.x
Dijkstra, C, S Daan & JB Buker (1990) Adaptive variation in the sex ratio of krestel broods. Functional Ecology 4: 143–147. https://doi.org/10.2307/2389333
Dzus, EH, G Bortolotti, & JM Gerrard (1996) Does sex-biased hatching order in bald eagles vary with food resources? Ecoscience 3: 252–258. https://doi.org/10.1080/11956860.1996.11682339
Fargallo, JA, JA Dávila, J Potti, A de León & V Polo (2004) Nest size and hatchling sex ratio in chinstrap penguins. Polar Biology 27: 339–343. https://doi.org/10.1007/s00300-004-0596-2
Fargallo, JA, V Polo, L de Neve, J Martín, JA Dávila, & M Soler (2006) Hatching order and size-dependent mortality in relation to brood sex ratio composition in chinstrap penguins. Behavioral Ecology 17: 772–778. https://doi.org/10.1093/beheco/arl007
Fiala, KL & JD Congdon (1983) Energetic consequences of sexual size dimor-
phism in nestling red-winged blackbirds. Ecology 64: 642–647. https://doi.org/10.2307/1937183
Fisher, RA (1958) The Genetical Theory of Natural Selection, 2nd ed., Dover Publications, New York, US.
Frere, E, P Gandini & PD Boersma (1998) The Breeding Ecology of Magellanic Penguins at Cabo Vírgenes, Argentina: What Factors Determine Reproductive Success? Colonial Waterbirds 21: 205–210. https://doi.org/10.2307/1521907.
Forero, MG, JL Tella, JA Donázar, G Blanco, M Bertellotti & O Cevallos (2001) Phenotypic assortative mating and within-pair sexual dimorphism and its influence on breeding success and offspring quality in Magellanic penguins. Canadian Journal of Zoology 79: 1414–1422. https://doi.org/10.1139/z01-088
Forero, MG, JL Tella, KA Hobson, M Bertellotti & G Blanco (2002) Conspecific food competition explains variability in colony size: a test using stable isotopes in Magellanic penguins. Ecology 83(12): 3466–3475. https://doi.org/10.1890/0012-9658(2002)083[3466:CFCEVI]2.0.CO;2
Gownaris, NJ & PD Boersma (2021) Feet first: Adaptive growth in Magellanic penguin chicks. Ecology and Evolution 11(9): 4339-4352. https://doi.org/10.1002/ece3.7331
Kalmbach,E. RW Furness & R Griffiths (2005) Sex-biased environmental sensitivity: natural and experimental evidence from a bird species with larger females. Behavioral Ecology, 16(2): 442–449. https://doi.org/10.1093/beheco/ari018
Kolman, W (1960) The mechanism of natural selection for the sex ratio. American Naturalist 94: 373–377. https://doi.org/10.1086/282139
Krackow, S (1995) Potential mechanisms for sex ratio adjustment in mammals and birds. Biological Reviews 70: 225–241. https://doi.org/10.1111/j.1469-185X.1995.tb01066.x
Legendre, P (2000) Model II regression, User’s guide. Département de sciences biologiques, Université de Montréal, Montreal.
Littell, RC, GA Milliken, WW Stroup & RD Wolfinger (1996) SAS System for mixed models. SAS Institute, Cary, North Carolina, USA.
McCullagh, P & JA Nelder (1983) Generalised Linear Modelling. Chapman and Hall, London, UK. https://doi.org/10.1007/978-1-4899-3244-0
Merkling, T, SA Hatch, S Leclaire, E Danchin & P Blanchard (2019) Offspring sex-ratio and environmental conditions in a seabird with sex-specific rearing costs: a long-term experimental approach. Evolutionary Ecology 33, 417–433. https://doi.org/10.1007/s10682-019-09983-2
Olsen, PD & A Cockburn (1991) Female-biased sex allocation in peregrine falcons and other raptors. Behavioral Ecology and Sociobiology 28: 417–423. https://doi.org/10.1007/BF00164123
Pike TW & M Petrie (2003) Potential mechanisms of avian sex manipulation. Biological Reviews of the Cambridge Philosophical Society 78(4):553–74. doi: 10.1017/s1464793103006146. PMID: 14700391. https://doi.org/10.1017/S1464793103006146
Renison, D, PD Boersma & M Martella (2002) Winning and losing: causes for variability in outcome of fights in male Magellanic penguins (Spheniscus magellanicus). Behavioral Ecology 13: 462–466. https://doi.org/10.1093/beheco/13.4.462
Ryder, JP (1983) Sex ratio and egg sequence in ring-billed gulls. Auk 100: 726–729. https://doi.org/10.1093/auk/100.3.726
Scolaro, JA (1987) Sexing fledglings and yearlings of Magellanic penguins by discriminant analysis of morphometric measurements. Colonial Waterbirds 10: 50–54. https://doi.org/10.2307/1521230
Scolaro, JA, M Hall & I Ximénez (1983) The Magellanic penguin (Spheniscus magellanicus): sexing adults by discriminant analysis of morphometric characters. Auk 100: 221–224. https://doi.org/10.1093/auk/100.1.221
Stokes, DL & PD Boersma (1998) Nest-site characteristics and reproductive success in Magellanic penguins (Spheniscus magellanicus). Auk 115:34–49. https://doi.org/10.2307/4089109
Sutherland, WJ (1996) From individual behaviour to population ecology. Oxford University Press., Oxford, UK. https://doi.org/10.1093/oso/9780198549116.001.0001
Tella, JL, JA Donazar, JJ Negro & F Hiraldo (1996) Seasonal and interannual variations in the sex-ratio of Lesser Kestrel Falco naumanni broods. Ibis, 138: 342-345. https://doi.org/10.1111/j.1474-919X.1996.tb04350.x
Tella, JL, MG Forero, M Bertellotti, JA Donázar, G Blanco & O Ceballos (2001) Offspring body condition and immunocompetence are negatively affected by high breeding densities in a colonial sea bird: a multiscale approach. Proceedings of the Royal Society B 268: 1455–1461. https://doi.org/10.1098/rspb.2001.1688
Titus, K, JA Mosher & BK Williams (1984) Chance-corrected classification for use in discriminant analysis: ecological applications. The American Midland Naturalist 111: 1–7. https://doi.org/10.2307/2425535
Torres, R & H Drummond (1997) Female-biased mortality in nestlings of a bird with size dimorphism. Journal of Animal Ecology 66: 859–865. https://doi.org/10.2307/6001
Torres, R & H Drummond (1999a) Does large size make daughters of blue-footed booby more expensive than sons? Journal of Animal Ecology 68: 1133–1141. https://doi.org/10.1046/j.1365-2656.1999.00357.x
Torres, R & H Drummond (1999b) Variably male-biased sex ratio in a marine bird with females larger than males. Oecologia 118: 16–22. https://doi.org/10.1007/s004420050698
Trivers, RL & DE Willard (1973) Natural selection of parental ability to vary the sex ratio of offspring. Science 179: 90–92. https://doi.org/10.1126/science.179.4068.90
Velando, A, J Graves & JE Ortega-Ruano (2002) Sex ratio in relation to timing of breeding, and laying sequence in a dimorphic seabird. Ibis 144: 9–16. https://doi.org/10.1046/j.0019-1019.2001.00002.x
Wiebe, KL & G Bortolotti (1992) Facultative sex ratio manipulation in American kestrels. Behavioral Ecology and Sociobiology 30: 379–386. https://doi.org/10.1007/BF00176172
Yorio, P, E Frere, P Gandini & G Harris (1998) Atlas de la distribución reproductiva de aves marinas en el litoral patagónico argentino. Fundación Patagonia Natural, Puerto Madryn.
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Marcelo Bertellotti, Guillermo Blanco, José Luis Tella, José Antonio Donázar, Manuela Forero
This work is licensed under a Creative Commons Attribution 4.0 International License.
This open access article is distributed under a Creative Commons Attribution 4.0 International License (CC BY), that allows others unrestricted use, distribution, and reproduction, providing the original author and source are credited.