BIRD COMMUNITIES RESPOND TO THE SEASONAL FRUIT AND FLOWER AVAILABILITY IN A FRAGMENTED TROPICAL ANDEAN LANDSCAPE
DOI:
https://doi.org/10.58843/ornneo.v35i1.1281Keywords:
Bolivia, bracken, foraging guild, Pteridium, reproductive phenology, YungasAbstract
Fire is one of the main causes of fragmentation in tropical Andean forests. Fragmentation can influence plant reproductive phenology, which in turn affects bird communities. In the Bolivian Yungas, we investigated how the seasonal availability of fruits and flowers affects bird richness, abundance and bird community composition in forest edges and adjacent bracken (Pteridium ferns) dominated areas. We captured birds with mist nets at eight sites during the dry, transition and wet seasons, and recorded fruit and flower availability through phenological observations and plant collections. We examined variation in species richness and abundance using generalized linear mixed-effects models, and bird species composition in each season using multivariate analyses. Fruit availability was higher in the transition and wet seasons, and lowest in the dry season, while flower availability did not differ among seasons. Bird species richness and abundance were significantly higher in bracken areas, although there was significantly lower fruit availability than at the forest edge, and these were mainly generalist bird species that may be tolerant to disturbance. Total bird abundance increased with higher fruit availability in both habitats, and with flower availability at the forest edge. Bird species composition differed between forest edges and bracken areas in the transition and the wet seasons, being influenced by fruiting and flowering phenology in the dry and transition seasons, and elevation in all seasons. Our results show the varying seasonal influence of plant reproductive phenology on avian communities of disturbed habitats, although other large scale factors associated with fragmentation may also shape bird communities.
References
Abernethy, K, ER Bush, PM Forget, I Mendoza & LPC Morellato (2018) Current issues in tropical phenology: a synthesis. Biotropica 50: 477–482. https://doi.org/10.1111/btp.12558 DOI: https://doi.org/10.1111/btp.12558
Aguirre, LF, EP Anderson, G Brehm, K Herzog, PM Jørgensen, GH Kattan, R Martínez, et al. (2011) Phenology and Interspecific Ecological Interactions of Andean Biota in the Face of Climate Change. Pp. 68–92 in Herzog, SK., R Martínez, PM Jørgensen & H Tiessen (eds). Climate Change and biodiversity in the tropical Andes. Inter-American Institute for Global Change Research (IAI) and Scientific Committee on Problems of the Environment (SCOPE)
Banks-Leite, C, RM Ewers & JP Metzger (2010) Edge effects as the principal cause of area effects on birds in fragmented secondary forest. Oikos 119: 918–926. https://doi.org/10.1111/j.1600-0706.2009.18061.x DOI: https://doi.org/10.1111/j.1600-0706.2009.18061.x
Barton, K (2022) MuMIn: Multi-Model Inference. R package version 1.47.1. Available at https://cran.rproject.org/web/packages/MuMIn/index.html.
Bascompte, J, & P Jordano (2007) Plant-animal mutualistic networks: The architecture of biodiversity. Annual Review of Ecology, Evolution, and Systematics 38: 567–593. https://doi.org/10.1146/annurev.ecolsys.38.091206.095818 DOI: https://doi.org/10.1146/annurev.ecolsys.38.091206.095818
Bates, D, M Mächler, B Bolker & S Walker (2014) Fitting linear mixed-effects models using lme4. Journal of Statistical Software 67: 1–48. https://doi.org/10.18637/jss.v067.i01 DOI: https://doi.org/10.18637/jss.v067.i01
Benavidez, A, E Tallei & A Schaaf (2023) Reproductive Phenology of Timber Tree Species in the Yungas Piedmont Forest of Argentina. Darwiniana 11: 295–309. https://doi.org/10.14522/darwiniana.2023.111.1098 DOI: https://doi.org/10.14522/darwiniana.2023.111.1098
Billerman, SM, BK Keeney, PG Rodewald & TS Schulenberg (2022) Birds of the World. Cornell Laboratory of Ornithology. Available at https birdsoftheworld.org/bow/home [Accessed 10 Feb 2024].
Blake, JG & BA Loiselle (2000) Diversity of birds along and elevational gradient in the Cordillera Central, Costa Rica. The Auk 117: 663–686. https://doi.org/10.2307/4089592 DOI: https://doi.org/10.2307/4089592
Blake, JG & BA Loiselle (2001) Bird assemblages in second-growth and old-growth forests, Costa Rica: Perspectives from mist nets and point counts. The Auk 118: 304–326. https://doi.org/10.2307/4089793 DOI: https://doi.org/10.2307/4089793
Blake, JG & BA Loiselle (2009) Species composition of neotropical understory bird communities: Local versus regional perspectives based on capture data. Biotropica 41: 85–94. https://doi.org/10.1111/j.1744-7429.2008.00445.x DOI: https://doi.org/10.1111/j.1744-7429.2008.00445.x
Boehm, MMA, MN Scholer, JJC Kennedy, JM Heavyside, A Daza, D Guevara-Apaza & JE Jankowski (2018) The Manú Gradient as a study system for bird pollination. Biodiversity Data Journal 6: e22241. https://doi.org/10.3897/BDJ.6.e22241.figure5a DOI: https://doi.org/10.3897/BDJ.6.e22241.figure5a
Bovo, AAA., KMPMB Ferraz, M Magioli, ER Alexandrino, É Hasui, MC Ribeiro & JA Tibias (2018) Habitat fragmentation narrows the distribution of avian functional traits associated with seed dispersal in tropical forest. Perspectives in Ecology and Conservation 16: 90–96. https://doi.org/10.1016/j.pecon.2018.03.004 DOI: https://doi.org/10.1016/j.pecon.2018.03.004
Boyle, WA, DR Norris & CG Guglielmo (2010) Storms drive altitudinal migration in a tropical bird. Proceedings of the Royal Society B: Biological Sciences 277: 2511–2519. https://doi.org/10.1098/rspb.2010.0344 DOI: https://doi.org/10.1098/rspb.2010.0344
Boyle, WA, CG Guglielmo, KA Hobson & DR Norris (2011) Lekking birds in a tropical forest forego sex for migration. Biology Letters 7: 661–663. https://doi.org/10.1098/rsbl.2011.0115 DOI: https://doi.org/10.1098/rsbl.2011.0115
Carlo, TA & JM Morales (2016) Generalist birds promote tropical forest regeneration and increase plant diversity via rare‐biased seed dispersal. Ecology 97: 1819–1831. https://doi.org/10.1890/15-2147.1 DOI: https://doi.org/10.1890/15-2147.1
Carlo, TA, PHSA Camargo & MA Pizo (2022) Functional ecology of Neotropical frugivorous birds. Ornithology Research 30: 139–154 https://doi.org/10.1007/s43388-022-00093-2 DOI: https://doi.org/10.1007/s43388-022-00093-2
Carnicer, J, P Jordano & CJ Melian (2009) The temporal dynamics of resource use by frugivorous birds: a network approach. Ecology 90: 1958–1970. https://doi.org/10.1890/07-1939.1 DOI: https://doi.org/10.1890/07-1939.1
Catterall, CP, AND Freeman, J Kanowski & K Freebody (2012) Can active restoration of tropical rainforest rescue biodiversity? A case with bird community indicators. Biological Conservation 146: 53–61. https://doi.org/10.1016/j.biocon.2011.10.033 DOI: https://doi.org/10.1016/j.biocon.2011.10.033
Chaves, PP, S Timóteo, S Gomes & A Rainho (2022) Response of avian and mammal seed dispersal networks to human-induced forest edges in a sub-humid tropical forest. Journal of Tropical Ecology 38: 199–209. https://doi.org/10.1017/S0266467422000062 DOI: https://doi.org/10.1017/S0266467422000062
Chaves-Campos, J (2004) Elevational movements of large frugivorous birds and temporal variation in abundance of fruits along an elevational gradient. Ornitologia Neotropical 15: 433–446.
De Souza Leite, M, AL Boesing, JP Metzger & PI Prado (2022) Matrix quality determines the strength of habitat loss filtering on bird communities at the landscape scale. Journal of Applied Ecologyl 59: 1–9. https://doi.org/10.32942/OSF.IO/BHEC5 DOI: https://doi.org/10.1111/1365-2664.14275
Develey, PF & CA Peres (2000) Resource seasonality and the structure of mixed species bird flocks in a coastal Atlantic forest of southeastern Brazil. Journal of Tropical Ecology 16: 33–53. https://doi.org/10.1017/S0266467400001255 DOI: https://doi.org/10.1017/S0266467400001255
Encinas-Viso, F, TA Revilla & RS Etienne (2012) Phenology drives mutualistic network structure and diversity. Ecology Letters 15: 198–208. https://doi.org/10.1111/j.1461-0248.2011.01726.x DOI: https://doi.org/10.1111/j.1461-0248.2011.01726.x
Fleming, TH (2005) The relationship between species richness of vertebrate mutualists and their food plants in tropical and subtropical communities differs among hemispheres. Oikos 111: 556–562. https://doi.org/10.1111/j.1600-0706.2005.14272.x DOI: https://doi.org/10.1111/j.1600-0706.2005.14272.x
Fox, J & S Weisberg (2019) An R companion to applied regression. Third edit. Sage, Thousand Oaks, California, USA.
Gallegos, SC, SG Beck, I Hensen, F Saavedra, D Lippok & M Schleuning (2016) Factors limiting montane forest regeneration in bracken-dominated habitats in the tropics. Forest Ecology and Management 381: 168–176. https://doi.org/10.1016/j.foreco.2016.09.014 DOI: https://doi.org/10.1016/j.foreco.2016.09.014
Gallegos, SC, C Mayta, M Villegas, GM Ayala, K Naoki, J Rechberger, V Rojas, et al (2024) Habitat differences in seed-dispersing vertebrates indicate dispersal limitation in tropical bracken-dominated deforested areas. Biotropica 56: e13317. https://doi.org/10.1111/btp.13317 DOI: https://doi.org/10.1111/btp.13317
García, D, R Zamora & GC Amico (2011) The spatial scale of plant-animal interactions: Effects of resource availability and habitat structure. Ecological Monographs 81: 103–121. https://doi.org/10.1890/10-0470.1 DOI: https://doi.org/10.1890/10-0470.1
Gomes, LGL., V Oostra, V Nijman, AM Cleef & M Kappelle (2008) Tolerance of frugivorous birds to habitat disturbance in a tropical cloud forest. Biological Conservation 141: 860–871. https://doi.org/10.1016/j.biocon.2008.01.007 DOI: https://doi.org/10.1016/j.biocon.2008.01.007
Gonçalves da Silva, B, I Koch & AJ Piratelli (2020) Fruit and flower availability affect bird assemblages across two successional stages in the Atlantic Forest. Studies on Neotropical Fauna and Environment 55: 203–215. https://doi.org/10.1080/01650521.2020.1743550 DOI: https://doi.org/10.1080/01650521.2020.1743550
Gonzalez, O & BA Loiselle (2016) Species interactions in an Andean bird-flowering plant network: Phenology is more important than abundance or morphology. PeerJ 2016: 1–22. https://doi.org/10.7717/peerj.2789 DOI: https://doi.org/10.7717/peerj.2789
Haddad, NM, LA Brudvig, J Clobert, KF Davies, A Gonzalez, RD Holt, TE Lovejoy, et al. (2015) Habitat fragmentation and its lasting impact on Earth's ecosystems. Science Advances 1: 1–9. https://doi.org/10.1126/sciadv.1500052 DOI: https://doi.org/10.1126/sciadv.1500052
Hartig, F (2022) DHARMa: Residual Diagnostics for Hierarchical (Multi-Level / Mixed) Regression Models. R package version 0.4.6.
Hartig, K & E Beck (2003) The bracken fern (Pteridium arachnoideum (Kaulf.) Maxon) dilemma in the Andes of Southern Ecuador. Ecotropica 9: 3–13.
Hasui, É, VSDM Gomes & WR Silva (2007) Effects of vegetation traits on habitat preferences of frugivorous birds in Atlantic rain forest. Biotropica 39: 502–509. https://doi.org/10.1111/j.1744-7429.2007.00299.x DOI: https://doi.org/10.1111/j.1744-7429.2007.00299.x
Herzog, SK, RS Terrill, AE Jahn, JV Jr. Remsen, OZ Maillard, VH García-Solíz, R Macleod, A Maccormick & JQ Vidoz (2016) Birds of Bolivia. Field guide. 1° edition. Asociación Armonía, Santa Cruz de la Sierra, Bolivia.
Howe, HF & J Smallwood (1982) Ecology of seed dispersal. Annual Review of Ecology, Evolution, and Systematics 13: 201–228. https://doi.org/10.1146/annurev.es.13.110182.001221 DOI: https://doi.org/10.1146/annurev.es.13.110182.001221
Jankowski, JE (2010) Distributional ecology and diversity patterns of tropical montane birds. Dissertation, University of Florida, USA.
Killeen, TJ, E García & SG Beck (1993) Guía de Arboles de Bolivia. Herbario Nacional de Bolivia & Missouri Botanical Garden. http://pdf.usaid.gov/pdf_docs/pnaca189.pdf.
Kimura, K, T Yumoto & K Kikuzawa (2001) Fruiting phenology of fleshy-fruited plants and seasonal dynamics of frugivorous birds in four vegetation zones on Mt. Kinabalu, Borneo. Journal of Tropical Ecology 17: 833–858. https://doi.org/10.1017/S0266467401001626 DOI: https://doi.org/10.1017/S0266467401001626
Laurance, WF, JLC Camargo, RCC Luizão, SG Laurance, SL Pimm, EM Bruna, PC Stouffer, et al. (2011) The fate of Amazonian forest fragments: A 32-year investigation. Biological Conservation 144: 56–67. https://doi.org/10.1016/j.biocon.2010.09.021 DOI: https://doi.org/10.1016/j.biocon.2010.09.021
Lippok, D, SG Beck, D Renison, SC Gallegos, FV Saavedra, I Hensen & M Schleuning (2013) Forest recovery of areas deforested by fire increases with elevation in the tropical Andes. Forest Ecology and Management 295: 69–76. https://doi.org/10.1016/j.foreco.2013.01.011 DOI: https://doi.org/10.1016/j.foreco.2013.01.011
Lippok, D, SG Beck, D Renison, I Hensen, AE Apaza & M Schleuning (2014) Topography and edge effects are more important than elevation as drivers of vegetation patterns in a neotropical montane forest. Journal of Vegetation Science 25: 724–733. https://doi.org/10.1111/jvs.12132 DOI: https://doi.org/10.1111/jvs.12132
Liu, J, DA Coomes, L Gibson, G Hu, J Liu, Y Luo, C Wu & M Yu (2019) Forest fragmentation in China and its effect on biodiversity. Biological Reviews 94: 1636–1657. https://doi.org/10.1111/brv.12519 DOI: https://doi.org/10.1111/brv.12519
Loiselle, BA, & JG Blake (1991) Temporal variation in birds and fruits along an elevational gradient in Costa Rica. Ecology 72: 180–193. https://doi.org/10.2307/1938913 DOI: https://doi.org/10.2307/1938913
Mangini, GG & JI Areta (2018) Bird mixed-species flock formation is driven by low temperatures between and within seasons in a Subtropical Andean-foothill forest. Biotropica 50: 816–825. https://doi.org/10.1111/btp.12551 DOI: https://doi.org/10.1111/btp.12551
Markl, JS, M Schleuning, PM Forget, P Jordano, JE Lambert, A Traveset, SJ Wright & K Böhning-Gaese (2012) Meta-Analysis of the Effects of Human Disturbance on Seed Dispersal by Animals. Conservation Biology 26: 1072–1081. https://doi.org/10.1111/j.1523-1739.2012.01927.x DOI: https://doi.org/10.1111/j.1523-1739.2012.01927.x
Marrs, RH, MG Le Duc, RJ Mitchell, D Goddard, S Paterson & RJ Pakeman (2000) The ecology of bracken: Its role succession and implications for control. Annals of Botany 85: 3–15. https://doi.org/10.1006/anbo.1999.1054 DOI: https://doi.org/10.1006/anbo.1999.1054
McCain, CM (2009) Global analysis of bird elevational diversity. Global Ecology and Biogeography 18: 346–360. https://doi.org/10.1111/j.1466-8238.2008.00443.x DOI: https://doi.org/10.1111/j.1466-8238.2008.00443.x
Menezes, I, E Cazetta, JC Morante-Filho & D Faria (2016) Forest cover and bird diversity: drivers of fruit consumption in forest interiors in the Atlantic forest of Southern Bahia, Brazil. Tropical Conservation Science 9: 549–562. https://doi.org/10.1177/194008291600900128 DOI: https://doi.org/10.1177/194008291600900128
Menezes Pinto, Í, C Emer, E Cazetta & JC Morante-Filho (2021) Deforestation Simplifies Understory Bird Seed-Dispersal Networks in Human-Modified Landscapes. Frontiers in Ecology and Evolution 9: 1–12. https://doi.org/10.3389/fevo.2021.640210 DOI: https://doi.org/10.3389/fevo.2021.640210
Merkord, C. L. 2010. Seasonality and elevational migration in an andean bird community. Dissertation. University of Missouri - Columbia, Columbia, Missouri, USA.
Molina-Carpio, J, D Espinoza, E Coritza, F Salcedo, C Farfán, L Mamani & J Mendoza (2019) Clima y variabilidad espacial de la ceja de monte y andino húmedo. Ecología en Bolivia 54: 40–56.
Montaño-Centellas, FA, & Á Garitano-Zavala (2015) Andean bird responses to human disturbances along an elevational gradient. Acta Oecologica 65–66: 51–60. https://doi.org/10.1016/j.actao.2015.05.003 DOI: https://doi.org/10.1016/j.actao.2015.05.003
Montaño-Centellas, FA & HH Jones (2021) Temperature and vegetation complexity structure mixed-species flocks along a gradient of elevation in the tropical Andes. Ornithology 138: 1–18. https://doi.org/10.1093/ornithology/ukab027 DOI: https://doi.org/10.1093/ornithology/ukab027
Morellato, LPC, B Alberton, ST Alvarado, B Borges, E Buisson, MGG Camargo, LF Cancian, et al. (2016) Linking plant phenology to conservation biology. Biological Conservation 195: 60–72. https://doi.org/10.1016/j.biocon.2015.12.033 DOI: https://doi.org/10.1016/j.biocon.2015.12.033
Morente-López, J, C Lara-Romero, C Ornosa & JM Iriondo (2018) Phenology drives species interactions and modularity in a plant-flower visitor network. Scientific Reports 8: 1–11. https://doi.org/10.1038/s41598-018-27725-2 DOI: https://doi.org/10.1038/s41598-018-27725-2
Muller-Landau, HC & BD Hardesty (2009) Seed dispersal of woody plants in tropical forests: concepts, examples and future directions. Pp. 267–309 in Burslem, D, M Pinard & S Hartley (eds). Biotic Interactions in the Tropics. Cambridge University Press, MA, USA. https://doi.org/10.1017/CBO9780511541971.012 DOI: https://doi.org/10.1017/CBO9780511541971.012
Neuschulz, EL, T Mueller, M Schleuning & K Böhning-Gaese (2016) Pollination and seed dispersal are the most threatened processes of plant regeneration. Scientific Reports 6: 6–11. https://doi.org/10.1038/srep29839 DOI: https://doi.org/10.1038/srep29839
O'Dea, N & RJ Whittaker (2007) How resilient are Andean montane forest bird communities to habitat degradation? Biodiversity Conservation 16: 1131–1159. https://doi.org/10.1007/s10531-006-9095-9 DOI: https://doi.org/10.1007/s10531-006-9095-9
Oksanen, J, G Simpson, F Blanchet, P Kindt, P Legendre, P Minchin, P O'Hara, et al. (2022) vegan: Community Ecology Package. Available at https://cran.r-project.org/package=vegan [Accessed 11 Jun 2024]
Ollerton, J, R Winfree & S Tarrant (2011) How many flowering plants are pollinated by animals? Oikos 120: 321–326. https://doi.org/10.1111/j.1600-0706.2010.18644.x DOI: https://doi.org/10.1111/j.1600-0706.2010.18644.x
Pelayo, RC, LD Llambí, LE Gámez, YC Barrios, LA Ramirez, JE Torres & F Cuesta (2021) Plant Phenology Dynamics and Pollination Networks in Summits of the High Tropical Andes: A Baseline for Monitoring Climate Change Impacts. Frontiers in Ecology and Evolution 9: 1–15. https://doi.org/10.3389/fevo.2021.67904 DOI: https://doi.org/10.3389/fevo.2021.679045
Pothasin, P, SG Compton & P Wangpakapattanawong (2016) Seasonality of leaf and fig production in Ficus squamosa, a fig tree with seeds dispersed by water. PLoS One 11: 1–22. https://doi.org/10.1371/journal.pone.0152380 DOI: https://doi.org/10.1371/journal.pone.0152380
Purificação, KN, MC Pascotto, F Pedroni, HA Mews & DP Lima-Junior (2020) Disentangling the architecture of the frugivorous bird-plant interaction networks in a savanna-forest mosaic in the Neotropical savanna. Acta Oecologica 107: 103601. https://doi.org/10.1016/j.actao.2020.103601 DOI: https://doi.org/10.1016/j.actao.2020.103601
Quitián, M, V Santillán, CI Espinosa, J Homeier, K Böhning-Gaese, M Schleuning & EL Neuschulz (2018) Elevation-dependent effects of forest fragmentation on plant-bird interaction networks in the tropical Andes. Ecography 41: 1497–1506. https://doi.org/10.1111/ecog.03247 DOI: https://doi.org/10.1111/ecog.03247
R Core Team. 2022. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing.
Ramos-Robles, M, W Dáttilo, C Díaz-Castelazo & E Andresen (2018) Fruit traits and temporal abundance shape plant-frugivore interaction networks in a seasonal tropical forest. Science of Nature 105: 29. https://doi.org/10.1007/s00114-018-1556-y DOI: https://doi.org/10.1007/s00114-018-1556-y
Razafindratsima, OH, NN Raoelinjanakolona, RR Heriniaina, RH Nantenaina, TH Ratolojanahary & AE Dunham (2021) Simplified Communities of Seed-Dispersers Limit the Composition and Flow of Seeds in Edge Habitats. Frontiers in Ecology and Evolution 9: 655441. https://doi.org/10.3389/fevo.2021.655441 DOI: https://doi.org/10.3389/fevo.2021.655441
Renner, SS (1989) A survey of reproductive biology in Neotropical Melastomataceae and Memecylaceae. Annals of the Missouri Botanical Garden 76: 496–518. https://doi.org/10.2307/2399497 DOI: https://doi.org/10.2307/2399497
Restrepo, C, N Gomez & S Heredia (1999) Anthropogenic edges, treefall gaps, and fruit-frugivore interactions in a neotropical montane forest. Ecology 80: 668–685. https://doi.org/10.1890/0012-9658(1999)080[0668:AETGAF]2.0.CO;2 DOI: https://doi.org/10.1890/0012-9658(1999)080[0668:AETGAF]2.0.CO;2
Saavedra, F, I Hensen, SG Beck, K Böhning, G Denis, L Till & M. Schleuning (2014) Functional importance of avian seed dispersers changes in response to human induced forest edges in tropical seed dispersal networks. Oecologia 176: 837–848. https://doi.org/10.1007/s00442-014-3056-x DOI: https://doi.org/10.1007/s00442-014-3056-x
Saracco, JF, JA Collazo & MJ Groom (2004) How do frugivores track resources? Insights from spatial analyses of bird foraging in a tropical forest. Oecologia 139: 235–245. https://doi.org/10.1007/s00442-004-1493-7 DOI: https://doi.org/10.1007/s00442-004-1493-7
Sekercioglu, CH (2006) Increasing awareness of avian ecological function. Trends in Ecology and Evolution 21: 464–471. https://doi.org/10.1016/j.tree.2006.05.007 DOI: https://doi.org/10.1016/j.tree.2006.05.007
Shankar Raman, TR, GS Rawat & AJT Johnsingh (1998) Recovery of tropical rainforest avifauna in relation to vegetation succession following shifting cultivation in Mizoram, north-east India. Journal of Applied Ecology 35: 214–231. https://doi.org/10.1046/j.1365-2664.1998.00297.x DOI: https://doi.org/10.1046/j.1365-2664.1998.00297.x
Traveset, A, R Heleno & M Nogales (2014) The ecology of seed dispersal. Pp. 62–93 in Gallagher, RS (ed). Seeds: the ecology of regeneration in plant communities. CAB International, Wallingford, UK. https://doi.org/10.1079/9781780641836.0062 DOI: https://doi.org/10.1079/9781780641836.0062
Tscharntke, T, JM Tylianakis, TA Rand, RK Didham, L Fahrig, P Batáry, J Bengtsson, et al. (2012) Landscape moderation of biodiversity patterns and processes - eight hypotheses. Biological Reviews 87: 661–685. https://doi.org/10.1111/j.1469-185X.2011.00216.x DOI: https://doi.org/10.1111/j.1469-185X.2011.00216.x
Vidal, MM, E Hasui, MA Pizo, JY Tamashiro, WR Silva & PR Guimarães (2014) Frugivores at higher risk of extinction are the key elements of a mutualistic network. Ecology 95: 3440–3447. https://doi.org/10.1890/13-1584.1 DOI: https://doi.org/10.1890/13-1584.1
Villegas, M, SD Newsome & JG Blake (2016) Seasonal patterns in δ2H values of multiple tissues from Andean birds provide insights into elevational migration. Ecological Applications 26: 2383–2389. https://doi.org/10.1002/eap.1456 DOI: https://doi.org/10.1002/eap.1456
Vizentin-Bugoni, J, PK Maruyama, CS De Souza, J Ollerton, AR Rech & M Sazima (2018) Plant-pollinator networks in the Tropics: A review. Pp. 73-91 in Dáttilo, W & V Rico-Gray (eds). Ecological Networks in the Tropics. Springer International Publishing. https://doi.org/10.1007/978-3-319-68228-0_6 DOI: https://doi.org/10.1007/978-3-319-68228-0_6
Downloads
Additional Files
Published
Issue
Section
License
Copyright (c) 2024 Mariana Villegas, Cesar Mayta, Cecilia L. López, Isabell Hansen, Silvia C. Gallegos
This work is licensed under a Creative Commons Attribution 4.0 International License.
This open access article is distributed under a Creative Commons Attribution 4.0 International License (CC BY), that allows others unrestricted use, distribution, and reproduction, providing the original author and source are credited.